
Genomics - Part 2: It’s the ‘junk DNA’ that matters  
 

 

‘Next-generation sequencing is the microscope of the 21st century*,’ so it is claimed. It’s not 

within the framework of Public Health to work with the technology, but it should follow how 

genomics influences common diseases for risk assessment and prevention. 

 

 

Health and diseases are influenced by the environment and genetics. The individual susceptibility 

to numerous diseases is influenced by genetic variation. Up to recently, the focus lay on ‘genetic 

discovery efforts targeting variants with large effects’ as a review paper about the ‘history of 

human disease genetics’ saw it (1). Less of interest were ‘alleles that influence predisposition to 

common diseases.’ Common diseases are significant public health problems, while those 

diseases commonly understood as ‘genetic diseases,’ or in memory of Mendel's work on 

heredity, named Mendelian diseases (page 14 ff) (2), are the domain of clinical medicine. Public 

health decision-makers and politicians' moderate interest in genetics favored curative therapy and 

supported research in genetics for personalized medicine. A telling example was the difference in 

attitude towards a proposal to look into the effects of environmental factors on child health 

versus an extended database on genomic health. At the same time, the latter was the more 

favored one (1, 3).  

 

Disappointment after publishing the ‘finished’ reference sequences of the Human Genome 

Project  

 

In 2003, it seemed that an overwhelming amount of human DNA, which means 97 percent of the 

3.2 billion bases, had no function. Francis Crick, a hero among genetic scientists, was quoted at 

that time as saying that most of the DNA was ‘little better than junk’ (4). However, it was 

realized soon that the ‘junk’ is a complex part of our genome and might consist of operational 

elements (5). The expression ‘junk DNA’ was replaced by ‘non-coding DNA’ for protein. As 

explained in part one of this entry, the conventional understanding is that after the initiation of 

the primary RNA transcript, the mature mRNA is transferred from the nucleus, and translation 

occurs in the cytoplasm encoding protein. This is not the case for non-coding DNA but serves 

gene regulations (page 571) (2). It is now apparent that genetic variants affect diseases and have 

other significant roles in determining gene function.  

 

Research in Mendelian disorders profited from the rapid advancement of genomic technology. 

Instead of Mendelian diseases, the term Monogenetic diseases is more clarifying. By 2000, from 

about 7,000 inherited diseases, about 1,000 could be traced to single genes (1). Celera Genomics 

(6) and scientists from countries with highly improved technologies and sufficient resources 

combined their efforts and worked on a massive database known as the ‘total’ human genome 

sequence and the Human Genome Project (HGP) (7). The abstract of the publication of Celera 

Genomics gives an impression of the undertaking. With the shotgun-sequencing method, 2.91 

billion base pairs were generated from 27,271,853 high-quality sequence reads from the DNA of 

five individuals (6).  

 



The immense efforts were undertaken in the hope of creating a complex map of the entire 

sequence of the human genome that will allow the investigation of the genetic basis of human 

diseases, in which multiple genes are involved (8). A genetic map describes the location of genes 

along chromosomes (page 118 ff) (2). However, in reviewing the Human Genome Project, it was 

concluded that in cases where multiple genes were involved, as in common human diseases, the 

‘genomic-based mapping techniques’ were insufficient (8). For non-communicable diseases 

(NCDs) such as diabetes or schizophrenia, it was realized that the whole system of ‘switches that 

govern where and how genes are expressed in the body’ was overlooked (9).  

 

The function of non-coding regions not fully understood 

 

One of the main functions of non-coding regions is transcription, forming RNA particles. 

Eukaryotes have three types of polymerase enzymes for transcribing different kinds of genes. 

The well-known mRNA is described by RNA polymerase II, but also micro RNAs (miRNA), 

small nuclear RNA (snRNA), and small nucleolar RNA (snoRNA) genes. Polymerase I 

transcribe ribosomal RNA (rRNA) genes. RNA polymerase III transcribes transfer RNA (tRNA), 

and 5S rRNA is linked to other ribosomal genes (10).  

 

The apparent, very complex configuration of the RNA system, which by no means is still fully 

understood, makes it an irresponsible undertaking to inject, on a global basis, mRNA molecules 

embedded in phospholipids into the human organism, as done with the mRNA vaccines during 

the COVID 19 affair. It is a very uneasy feeling not knowing what experts, with their goal to 

embark on ‘excellent research’ in mind, will come up with in the future while playing around 

with the generic structure on a population basis.  

 

For instance, microRNAs seem involved in development issues, and small RNAs (sRNAs) are 

found in ‘silencing’ genes. While only the function of several different non-coding RNAs 

(ncRNA) could be identified, while others are still under investigation. Non-coding DNA is 

required for the ‘proper’ expression of the genes and is found close to transcription factors, 

referred to as cis-acting elements. Among cis-acting regulators are promoters, enhancers, and 

silencers. Close to the transcriptional sites are response elements. Several non-coding regions 

might be causing diseases in humans, but how these regions function is unclear. Trans-regulatory 

factors bind to cis-acting sequences and modify gene expression. Introns, as mentioned in part 

one of this entry, splice the exon, the part which is finally involved in translating polypeptides. 

Shanmugam et al. (11) give a more detailed overview of the non-coding RNA and DNA.  

 

Experts in genetics have their terms 

 

After the HGP was published more than 20 years ago, genomics gave biomedical research an 

enormous push. To get an impression of how fast the scientific field of genetics developed, one 

might compare the latest edition of the standard textbook about genetics published in 2021 (2) 

with the seventh edition from 2011. Numerous new aspects and findings were included in the 

latest edition. However, it became increasingly difficult to read and understand genomic 

publications because of the detection of unique genomic characteristics described by terms used 

by experts but unknown to the laymen.  

 



What has not changed since we finished high school is the understanding of what is a ‘gene.’ The 

gene, in the words of an expert, ‘is a segment of DNA on one of the chromosomes, which 

function as a unit encoding (‘directing’ so to say) to create a certain RNA or polypeptide’ and 

finally a protein. Based on Mendel findings with peas, there are two copies of genes inherited 

from the mother and the father, such as resulting in a child's eye color. A specific eye color for 

one child is part of the phenotype of the child, or one might say the particular trait of that person. 

The traits can be very complex and might be controlled by many genes. The alternative forms of 

a single gene are called alleles. Many traits are measured in quantities, so in one of the same 

population, the height of people is different. It can be calculated as the variance of size in the 

population (so the industry, knowing the variation of height, can produce fashionable dresses for 

the youngsters, being either quite tall, have a ‘normal’ height, or are a little bit smaller compared 

to their friends).  

 

The specific location of genes in a particular chromosome is named loci. A genetic map relates to 

the actual distance in base pairs of DNA. The mapping of quantitative trait loci (QTLs) helps to 

explain genetic variant effects (11). If the linkage of the variant is quite close to the trait loci, the 

probability increases that the markers are inherited. Trait loci along DNA rows add to a 

phenotype. As mentioned above, inherited genes shape the trait, such as the height, the color of 

the skin or the hair, or the blood group a particular person belongs to. Variation in the expression 

of the genes determines the different phenotypes. However, if one gene is expressed in favor of 

the other one, it influences the effect on the trait and might increase the risk for diseases such as 

hemoglobinopathies along the different traits of blood groups.  

 

Annotation means that genome analysis is customarily performed, deposited in a gene bank, and 

published, or simply it means ‘which sequence of DNA does which task’ (page 327ff) (2). The 

results from the ‘annotation’ of the genome were accumulated on big-data bases, such as 

Encyclopedia of DNA Elements (ENCODE), GTex (Genotype-Tissue Expression) eQTL 

Browser, Roadmap Epigenomics Mapping Consortium (12). One such public archive of genetic 

variations is ClinVar (13). From about one million entries into ClinVar from patients with severe 

genetic diseases, 47% of variants have uncertain effects or conflicting analytical results (14). 

Generally, variants clearly define monogenic diseases happen to be rare. Common variants 

seldom have large impact on diseases. Variants with large effects are close to protein-coding 

regions, contrary to variants falling outside protein-coding regions. That is why QTLs are a 

meaningful research variable for interpreting the function of genes.  

 

Genetics of common diseases 

 

The relationship of the genetic background of human disease could be interpreted, given our 

evolution. Genetic variants with a large effect on disease risk might be partly removed from the 

population and nowadays impress as rare genetic diseases. In contrast, common variants are less 

likely to have very large effects on diseases. Nevertheless, the effect, especially in later life, 

could be life-threatening, with environmental and additional traits. Often, non-coding regions are 

related to human diseases, which could be large effect variants such as breast, ovarian, and 

prostate cancer, or fortunately with small individual effects, such as Autism spectrum disorder 

(ASD) or developmental delay, but are more frequent within the population  (14, 15). 

 



Thus, genome technology used to look into the function of key variants differs between rare 

diseases, such as ‘genetic diseases,’ and common diseases, such as diabetes mellitus, asthma, and 

depression. Large data sets of genes and variants combined with advanced laboratory 

technologies and clinical observations will be the future main approaches to search for causal 

variants for rare diseases. At the same time, genetic analysis of human populations with ‘direct 

relevance to human physiology and health should dominate research for common diseases’ (14). 

 

Common diseases are polygenetic 

 

Common diseases are polygenetic, with many loci related to the phenotype and often joining risk 

patterns with environmental factors. Gene expression for common diseases depends 

predominantly on non-coding genome regulation. Those with common diseases often have no 

family history, but relatives of those with a genetic disposition might have a higher risk of 

suffering from the disease (15). Single nucleotide polymorphism (SNP) is the genetic basis of 

common diseases. However, the ‘effect size’ of loci significantly associated with common 

diseases is difficult to identify. Developments in computerization and the SNP array technology 

made it possible to associate thousands of genomic loci to an illness or trait. One technique 

compared cases (affected) with unaffected (controls). The program related to these efforts is the 

genome-wide association studies (GWAS) (16).  

 

Besides the case-control endeavor, population studies such as the volunteer cohort of five 

hundred thousand people between 50 and 70 years old from the UK Biobank (UKB) contributed 

to the challenge of insight into the polygenicity of common diseases. Individuals with a 

polygenetic risk for a disease do not necessarily have the disease. This phenomenon might be 

due to the process called negative selection. Here, alleles with a highly dangerous effect on 

health tend to be removed from the population, as mentioned above. For instance, from 117 

individuals with T2DM SNPs, two individuals within the lowest polygenetic risk have 98 and 92 

risk alleles, while two persons are T2DM patients show 131 and 130 T2DM-associated SNPs and 

are in the highest centile of polygenetic risk. Similarly, 306 women with breast cancer-associated 

SNPs, two not having the disease, were found to have 273 and 266 risk SNPs, while two other 

patients with the disease were found with 326 and 322 risk-associated SNPs (15).  

 

Risk assessment in genetics  

 

Risk assessment in common diseases related to omics leaves students, lecturers, and public 

health experts, including epidemiologists and statisticians, quite bewildered. Common diseases 

are one of the domains of public health. Our ‘daily bread’ are relative risk, odds ratio, and the 

Mantel-Haenszel statistics (page 634 ff) (17). The Dictionary of Epidemiology covers almost two 

pages with numerous keywords about the risk subject (pages 250 ff) (18). Generally, risk 

assessment is defined as ‘the qualitative estimation of the likelihood of adverse effects that may 

result from exposure to specified health hazards or the absence of beneficial influence.’  

 

Those in the field of genomics admit that there are several ‘traditional’ risk factors, and several 

risk prediction models have existed for quite some time already. Diseases occur independently of 

genetic conditions, mainly due to environmental factors. However, it is argued that, in addition, 

genetic variables play a role in the occurrence of common diseases and might even be the ‘most 



informative risk factor in pre-symptomatic individuals.’ Coronary Heart Disease predominantly 

occurs in older age, but genetic risk scoring could be used as a prevention tool for people in the 

middle age groups (19). Similarly, risk prediction could be helpful in breast- and prostate cancer, 

obesity, type 1- and type 2 diabetes mellitus, and Alzheimer's disease (20). Not only ‘relative 

risk’ and ‘odds ratio’ might be a ‘household name’ for public health, but in the future, 

‘polygenetic indices’ or ‘polygenetic risk scoring’ should be a common entity observed by public 

health.   

 

Polygenetic scoring for common diseases 

 

Polygenetic scoring for common diseases was made possible not only through the rapid 

development from ‘Sanger sequencing’ to the ‘whole genome shotgun technique’ up to ‘next-

generation sequencing’ as mentioned in part one of this entry. Likewise, rapid advancements in 

data processing and specialized statistical methods applied to genetic investigation resulted in 

thousands of research results now available in the genome-wide association study (GWAS).  

 

A user guide explains how polygenetic scoring works (21). For 47 phenotypes in 11 databases, 

‘DNA-based predictors’ are given. Besides GWAS, other data sources were used, including the 

UK Biobank, as mentioned above. All available summary statistics were used for each 

phenotype, and the highest SNP heritability was kept. Through complex statistics, an additive 

SNP factor was identified as a true ‘regressor.’ The polygenetic score, also named polygenetic 

index, was understood as a proxy variable, which could be ‘biased’ by the additional variables 

necessary for the phenotype. Phenotypes included behavioral variables such as cognitive ability 

and education, alcohol consumption and smoking, and anthropometry as BMI and height. With 

this technique, polygenic risk scores (PRS) for inflammatory bowel disease, atrial fibrillation, 

and glaucoma are revealed (15). An attempt is made to generate a PRS catalog as a database in a 

standardized format for systematic evaluation (20).  

 

How do family history and polygenetic risk score correspond? 

 

In the clinical setting, asking the patients about disease occurrence within the family is a routine 

procedure. The limitations of family history (FH) assessment are well known, such as recall bias, 

misunderstanding between the patient and the medical doctor, and not knowing much about the 

diseases for relatives while the size of the families declines. Comparing FH with genetic 

susceptibility to PRS will set the suitability of one method against the other. Genetic loci for 

most common diseases are available through GWAS. A population database (FinnGen) of family 

relationships up to 50 years based on nationwide registries was used to examine how FH 

interrelates with PRS for twenty-four common diseases in a systematic way (22). Expecting a 

clear-cut interrelationship between both approaches was somehow disappointing. On average, 

PRS was met to 10% by first-degree family history. The other way around, first-degree family 

history was correlated to only 3% of PRS. According to the authors' judgment, both variables 

reacted more or less independently, while for coronary arteria diseases, glaucoma, and type 2 

diabetes, FH was met with a ‘considerably elevated PRS risk.’ Besides cardiometabolic diseases, 

breast, and ovarian cancers with the high-risk variants BRCA1 and BRCA2, as well as 

depression FH and PRS, are moderately related. Generally, PRS is not recommended for 

prevention measures, given that FH is available. As an exemption, PRS could be used to assess 



breast, prostate, and colorectal cancer risk assessment. In cases FH indicates the cancer risk as 

well, the determination of PRS might add valid information in assuring the severity of the risk. It 

is also argued that a high PRS for cardiovascular diseases and type 2 diabetes mellitus could 

benefit preventive treatment and motivate patients to change their lifestyles.  

 

Randomized control trials versus Mendelian randomization 

 

Risk assessment through PRS also could strengthen risk estimation for public health. Another 

genetic tool may interest epidemiology. Randomized control trials comparing exposed groups 

under intervention with suitable control groups without intervention. Such trials are hampered by 

several biases, particularly by confounding. Mendelian randomization (MR) uses exposed alleles 

with control alleles, while for the two groups, the confounders are equal. This is easily said as 

done!  

 

Claiming that smoking causes bladder cancer will not be readily accepted by the tobacco 

industry. Arguments against that hypothesis will come up, pointing towards numerous 

confounders and biases. A fictional situation pointing towards a confounder could arise in Egypt, 

where bladder cancer is very common due to chronic infection with Schistosoma haematobium. 

A smoking Egypt farmer, with his feet frequently in the water, will point towards the parasite and 

strictly argue against the idea that his smoking will cause cancer in his bladder. The MR example 

here, however, is taken from an investigation in Spain.  

 

Carcinogens in tobacco smoke include aromatic and heterocyclic amines, which could cause 

bladder cancer. The amines are detoxified by N-acetyl transferase 2 (NAT2). NAT2 enzyme 

variation could either slower or faster react in detoxification. In this case, those with the gene 

variance with lower detoxification will be at a higher risk for bladder cancer when smoking. It 

was found that the NAT2 slow acetylation genotype has an increased risk for bladder cancer 

(OR, 95% CI): Overall 1,4 (1.2-1.7), never smokers 0.9 (0.6-1.3) and ever smokers 1.6 (1.3-1.9) 

(23).   

 

Mendel randomization needs nucleotide polymorphism traits (NPT) for a potential causal 

relationship (24). These are available in GWAS, but withdrawing the variants needed to reject or 

allow the hypothesis from the database is a complex task. An appropriate MR-Base platform is 

available for 2-sample Mendelian randomization (2SMR). From the original base, out of 1673 

GWAS, eleven billion NPT are regularly updated. The technique seems suitable for the academic 

segment of public health experts to adopt the methodology for epidemiological studies (25).  

 

The future in genetics with single-cell sequencing and more 

 

PRS and MR expanded the opportunity to include genetics in applied epidemiology and 

statistics; there is more to come. ‘Single-cell sequencing (scRNAThe-seq) opens the door to a 

new area of functional genetics’ (26). This element of the non-coding protein genetics is highly 

involved in regulatory gene expression on the cell level. eQTL, as mentioned above, measures 

the distance between RNA variants and gene expression. This requires a high number of cell 

populations. For example, through the single-cell eQTL mapping, the specific cell type for 

genetic control of autoimmune diseases is investigated (27), and the regulation of gene 



expression of the human tissue (28). For those who believe that the difference between men and 

females is a social construct, a recent publication in Science might be of interest (29). From 

forty-four human tissues of 838 adults, 16,245 RNA sequencing samples were taken. 

 

All in all, 13,294 genes are related either to men or females. The function of the genes involves 

drug and hormone response, fat metabolism, and immune response. Predictably, embryonic 

development and tissue morphogenesis, fertilization, sexual reproduction, and spermatogenesis 

had been identified. There are 369 eQTLs across specific tissues ‘biased’ by sex. Gene 

regulations in single sex drive ‘58 gene traits.’ Epigenetic marks are highly expressed in females. 

For instance, eQTL for the hexokinase HKDC1, which is connected to glucose metabolism in 

pregnancy, influences the child's birth weight.   

 

The European dominance in GWAS 

 

Up to 2020, about 4500 GWAS reported from 4300 papers verified 55,000 loci for almost 5,000 

diseases and traits (12). Despite all this enhancement, it is criticized that loci detected in GWAS, 

related to disease risk increase, are moderate and ‘explain only a fraction of the heritability.’ On 

the other hand, there is evidence that ‘the strength of association of a GWAS locus is not 

proportional to its biological importance.  

 

A more serious shortcoming is the overwhelming focus on European ancestry over non-European 

ancestry, amounting to only 7.4% of Asians and 1% of Africans of all participants (30). This is 

going to change. Research in genome sequence analysis in many different ethnic cohorts has 

been identified, and published results by comparing genetic variation between populations so far 

would justify a separate entry into this blog.  

 

Examples of some drawbacks justify large multi-ethnic biobanks, which will be beneficial for 

those population groups with functional variants and causal genes not yet included in GWAS. 

‘Genetic drift and adaptation to the environment over thousands of years are important’ (31). A 

publication about human genetic variation in Europe, the Middle East, Central and South Asia, 

East Asia, Oceania, and the Americas, the magnitude of variation on continents was compared to 

Africa, setting it to a hundred percent, and for the archaic admixture to the Oceana, where it is 

the highest variation in the world. Total genetic variation is relatively low in the Americans 

compared to the other six continents, and archaic admixture is the lowest worldwide (32). In the 

past, the Asian population was not included in genetic studies of obesity since the prevalence was 

low at that time, which has drastically changed (33). In Singapore, a specific SNP connected to 

T2DM was detected in citizens with an Indian background but not in Chinese and those from the 

Malay (34). The most recently published results of a Chinese survey for thirty-one complex 

phenotypes found that, on average, 54.5% of European associates SNPs were significant in East 

Asia tool, and heterogeneity and allele frequency pattern often did not match the European 

phenotypes (35).  

 

Viewpoint 

 

How the insufficient concern of population groups in Asia and here in Thailand within the 

existing databases is relevant for medical genetic services is unclear. In a 2017 publication, 



genetic services in clinical medicine, like in other middle-income countries, at that time seemed 

to be neglectable (36). More than five years later, this might have changed, at least for major 

university hospitals. A well-known private hospital in Bangkok, caring not only for Thai patients 

but is well attended by patients from the Middle East and other countries worldwide, started to 

advertise genetic testing, among other risks for cancer, allergies, cardiovascular diseases, and 

hyperlipidemia.  

 

So far, as it is known for public health, research and application of omics is neglectable. 

Throughout the COVID-19 calamity, decision-making was based not on public health expertise, 

with devastating consequences, as appears by now. As a sensitive issue, this is not discussed in 

Thailand but is a major controversy in Western countries. In the future, besides immunology, 

genetic issues for common diseases should be an essential issue of interest and not be overruled 

by advice from experts in biological science only (37).  

 

*Quotation from (8) 
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