
AI in biomedical and health sciences – applications and challenges  
 

Medicine, public health, pharmacy, and medical sociology deal with health, illness, and death 

- can AI be trusted?  

 

 

The inroads of artificial intelligence (AI) into sociology and politics, so far, seem to be 

problematic, as discussed in the foregoing entries (1, 2). In health science disciplines are 

combined, which has enormous importance for society, as it is true for the legal system. AI 

models might pass law exams, such as multiple-choice or essay questions, but profoundly fail in 

real-world legal tasks. There, an AI model has to react to different interpretations of a given law 

or a former ruling, and to contradictory arguments between layers and judges or two legally 

battling individuals, not just to correctly answer multiple questions and write an essay (3). The 

Medical state exams might require multiple-choice answers throughout many different 

specialties, but will a suffering patient, anxiously waiting for the efficient help of an experienced 

physician, trust AI? In combining disciplines caring for health and healthcare, covered in the 

academic field as medicine, pharmacy, nursing, and public health. All four topics are intertwined 

and, to some extent, connected to important aspects of social science. (4).  

 

AI technology in psychological research  

 

A telling example of troublesome AI technology occurred in psychological research. The idea 

that LLMs simulate human psychology and could replace human participants in psychological 

studies was troublesome. Slight changes in wording by ‘prompting’ resulted in large changes and 

discrepancies between LLMs and human responses. Even specific ‘fine-tuned’ models designed 

for psychological AI research did not produce reliable results (5). 

 

Silicon samples in sociology  

 

The attempt by social scientists to use LLMs to ‘create’ fictitious samples, referred to as ‘silicon 

samples,’ for their research project is debated. A systematic investigation into this research 

technique revealed that there is practically no accuracy in the ‘silicon sample’ compared to 

human data. During the selection of silicon substitutes, very small changes resulted in significant 

discrepancies among the silicon samples. At best, one sample, out of an overall total of 252 

samples, corresponded well to one category, but poorly to the others. Finally, it was not possible 

to come up with even ‘one-size-fits-all’ configuration (6).  

 

The imbalance of popular LLMs could be due to leaning heavily during ‘training’ towards the 

European culture, and disregarding minorities and older people. It is possible that two 

researchers running the same study with silicon samples could reach opposite conclusions (7). 

 

Synthetic samples for medical research  

 

Not only in psychology but also in medicine, researchers started to use AI-generated medical 

data to avoid the need for ethics reviews (8). It is argued that synthetic data could be used in 

medical research, not originating from real populations, but created through mathematical 



models and algorithms, which could benefit hypothesis generation or preliminary testing for 

research approaches before collecting data from real populations (9). 

 

An AI example directly related to clinical purposes is the use of AI models for the interpretation 

of patients' X-ray scans to generate reference scans. Radiology is a rare profession in medicine, 

so real data are limited, and AI models will help the radiologists work faster (10). Ethical and 

legal considerations prohibit replacing the medical doctor with AI. Radiology is only one 

example hinting towards the possible future use of synthetic data for healthcare.  

 

Synthetic data in the research of various clinical specialties 

 

A ’scoping’ review of domains, motivations, and future applications covered a broad spectrum of 

the medical specialties, including oncology, neurology, cardiology, endocrinology, and 

gynecology (11).  

 

Of 42 relevant publications, the main specialties were oncology, neurology, and cardiology. The 

primary motivation for testing the artificial data was to explore its future use, the types of data it 

generated, and its limitations and opportunities. The reasons to use such data rested on the 

difficulty of coming across enough real patients’ data, the limitations of using real data in making 

sure that the privacy of the patients is secured, and the aspect that such an approach is 

considerably new and unexplored. The expectation is that it could help to improve diagnosis, 

treatment, and monitoring of the diseases, which is especially advantageous for rare diseases or 

those highly dangerous to health.  

 

Concerns about the methodology were voiced regarding data security, quality, the way of AI 

development, and the direct medical and clinical applications. Uncertainty evolved in the 

identification of risk, which might not reflect the real data, which might be of particular concern 

in rare diseases. Images in the health field pose specific problems because they may not reflect 

reality.  

 

Examples for data generator for study types  

 

There are data generators for specific study types. For single-cell RNA sequencing data, the 

SPLATTER generator is mentioned as useful for oncology (12). The Splatter Bioconductor hints 

towards multiple simulation methods of relevance for AI technology. So far, most publications 

refer to a single domain, without mentioning subdomains. An exception is endocrinology, 

dealing with COVID and diabetes (11). The focus was given to diabetes type one. A suitable 

synthetic data generator includes the UVA/PADOVA Type I Diabetes simulator (13). 

 

AI models in epidemiology and statistics 

 

Epidemiology is one of the key methods for population health research. Even before AI models 

came into the limelight, epidemiological research drew on numerous mathematical models, for 

instance, in the description of the spread of infectious diseases (14). The most recent push in this 

direction initiated the COVID-19 calamity, and considered AI models to simulate networks, 



combined with additional established models, based on real data, estimated the distribution of 

infectious diseases over time (15, 16).  

 

Among public health experts, the question of whether statistics come first and epidemiology is a 

sideline of statistics or the other way around is an unsolved controversy among professionals. 

Anyway, applied statistics nowadays focuses on AI as well, studying AI models themselves their 

reliability, and quality. This involves AI in applied statistics in the field of engineering and 

technological advances. In the medical field, ChatGPT was tested as an AI support tool for 

straightforward medical questions to verify suspected diagnoses. ChatGPT correctly answered 

over 90% of trivia questions in coronary artery diseases, pulmonary and venous embolism, 

fibrillation, heart failure, and risk management (17). Well-known statistical software such as 

SAS, JMP, Stata, and Python, were improved with the help of AI technology. Attention was paid 

to AI-generated coding, which worked well with easygoing problems, but still needs 

improvement for more difficult undertakings, where bugs and incorrect logic did occur (18). 

 

Genomics is the main beneficiary of AI 

 

From a biomedical perspective, the usefulness of AI applications in genomics is more convincing 

than in other related fields. Advances in research techniques emerged with a swiftness rarely seen 

before. Genomics, which has even modernized historical investigations, has explored the 

genomics of Neanderthals in Europe and Denisovans in Asia (19, 20). Among others, 

metabolomics, epigenomics, lipidomics, and proteomics, down to artificial and single-function 

proteins, digging deep into various fields of key parts of biomedical science (21).  

 

The tens of thousands of proteins in the human body, encoded by genes, are made from a string 

of amino acids of various sizes. Previously, in a very tedious manner, the structures of proteins 

were assessed in the laboratory using X-ray crystallography and cryo-electron microscopy. The 

results of the investigations in that field were entered into databases. As a forerunner of an AI 

model, University of Washington scientist David Baker worked on software called ‘Rosetta’ to 

combine amino acid sequences of protein parts and insert the DNA coding for those sequences 

into bacteria, which produced the desired protein. These artificial proteins, however, were still 

non-functional (22).  

 

The Nobel prize for physics in 2024 

 

With AI protein language models (PLMs), categorized as ‘end-to-end-to-text sequence 

generation’, the task became easier, but only non-functional molecules could still be designed 

from short amino acid sequences. The proteins remained inert because their proper 3D structure, 

which controls their function, was not considered. Using the relevant 3D databases, the scientists 

Demis Hassabis and John Jumper trained a large language model (LLM) known as AlphaFold2. 

Both approaches —Baker's approach together with the models from Hassabis and Jumper — 

enhanced ‘structural biology’.  

 

The model's training began with standard language instructions for designing sequences and 

eventually combined structure and language. Baker’s first functional protein was named Top7, an 



exceptional structure ‘not yet been seen in nature.’ All three scientists got the Nobel Prize for 

Physics in 2024 (22).  

 

Functional proteins in the future?  

 

The model can produce functional proteins similar to those of existing molecules, like enzymes 

and antibodies (23, 24). Intentionally introducing an artificial protein into human metabolism 

may not be to everyone's liking. There are enthusiastic hints of proteins with functions that we’ve 

never imagined.’ Envisaged are peptides against various strains of influenza, molecules that 

deliver drugs to the body, enzymes to clean water, and help recycle plastics and composite 

materials, as well as microbes sucking carbon dioxide out of the atmosphere (22).  

 

Protein sequencing and the example of breast cancer  

 

Yet, for many scientific applications, protein sequencing using laboratory technology served 

research for very pragmatic purposes in medicine and pharmacy, and with AI now protein 

sequencing is revolutionized (25). This could lead to a new area of personalized risk assessment, 

for instance, in oncology in the clinical setting, illustrated by the example of breast cancer. 

 

Variants for particular genes are known to cause breast cancer. For quite some time, it has been 

known that carriers of the BRCA1 variant have a 57% risk (95% CI, 47% to 66%) and carriers of 

the BRCA2 variant have a 49% risk (95% CI, 13% to 23%). BRAC2 also has a relatively high 

risk of 40% for ovarian cancer, while the risk for this malignancy for BRAC1 is lower, with 18% 

(26). Some females won’t want to know about the possibility of being a carrier, because of the 

uncertainty, whether to really become a victim, or others might even decide to amputate their 

breasts. To know such a risk, therefore, is a double-edged sword.  

 

Penetrance of variants of disease-related phenotypes  

 

The uncertainty whether the variant is potentially dangerous depends on a protein function and 

its ‘possible dynamic mechanism’, called the ‘conformational status,’ which is different from its 

‘compositional status’, of which the latter relates to various conditions, such as temperature, 

solvation, concentration, and other conditions that determine how the protein works (27). For the 

clinic, not only are the harmful consequences of a particular genomic variant important, but also 

the likelihood that the clinically relevant condition will evolve.  

 

Formerly, the penetrance of breast cancer was estimated by epidemiological means, investigating 

disease occurrence frequently in particular families or measuring the incidence of carriers of the 

relevant variants within the total population (28). Very time-consuming and complex biophysical 

experiments and molecular dynamics simulations in the laboratory were also used to assess the 

penetrance with a ‘top-down’ approach. Recently, an innovative AI model was created and 

published. Using machine learning, the results of oligonucleotide and sequencing techniques 

generated a large volume of data, enabling AI to approximate disease risk by testing individual 

variants and their penetrance (29, 30). So far, machine-learning models for 10 selected diseases 

have been developed using patient data from more than one million individuals, incorporating 

1600 variants in 31 genes. The models were validated on clinical data from the Mount Sinai 



Health System. The system enables a ‘bottom-up’ methodology based on the individual patient 

and the disease she or he is suffering from. The AI technique in this example shifts diagnosis and 

treatment closer to ‘precision medicine’ (29). This innovative development in medicine 

obviously had the opportunity to assess data and software, partly available through sources of a 

well-known medical establishment.  

 

The commercial aspect of AI in genomics 

 

It is not known whether the above-described program will be free. The question arises because 

patient data are used to train the model. In the EU, key components of AI and training data are 

subject to scrutiny. Once a model claims to be free, it is allowed to be studied, modified, and the 

underlying model can be shared and scrutinized. It is known that firms might claim to offer open-

source AI to avoid scrutiny, even though they do not actually have the ‘open-source’ label. There 

is the threat that the scientific community is in danger of finally facing ‘closed corporate systems 

and unverifiable models’ (31).  

 

The AlphaFold model starts to lack data  

 

The AlphaFold model, mentioned above as the one that won the Nobel prize, starts to have 

problems incorporating more data. The latest version, AlphaFold3, models the interaction with 

other molecules, including drugs. It seems that data useful for AlfaFold3 are also of great interest 

to drug companies, and relevant research results are being withheld and not published. Leading 

pharmaceutical companies are reportedly planning to develop their own AlphaFold3 AI model. 

Besides the 200.000 freely available protein structures in the Protein Data Bank (PDB), there are 

thousands of protein structures hidden in pharmaceutical company safes, neither shared by the 

pubic nor with other drug companies (32). There is the threat that AI in the future will not make 

full use of the methodology, unless drug companies allow independent organizations to manage 

the nonproprietary high-quality datasets to train and validate models for the overall benefit (33). 

It doesn’t look like this will happen soon.  

 

Patents on AI-derived drugs not yet been tested in vivo 

 

Another unfavorable aspect of AI-derived drugs is that companies that rely particularly on AI 

drug development have managed to patent more molecules without prior in vivo testing, 

compared to those firms that work more along a conservative path, actually testing their products 

more often in vivo before obtaining a patent. Speculative molecule structures, then, are blocked 

by the patent in that other companies are reluctant to test the remedy because of legal 

considerations. The incentive for research is then minimal, and many promising molecules will 

never become a final product. Although obtaining a patent for a molecule or invention requires 

proof that the item is novel and has not been previously disclosed, if it is plausible that the 

intervention will work as expected, the firm's lawyers might succeed in obtaining the patent. To 

avoid blogging promising developments in the future, evidence that the molecule really works as 

promised must be more strictly enforced (34).  

 

Outlook for public health, statistics, and publications  

 



This third reflection on AI focuses on biomedical science, including medicine, public health, 

pharmacy, and genomics. The field with the most potential to benefit from AI appears to be 

genomics. Statistics, among all the remaining specialties, is the most twisted between the 

established way of operating and a rather challenging future. The ‘two’ cultures in statistical 

modeling belong to ‘data modeling’ on one side and ‘algorithmic modeling’ on the other. The 

conventional attitude is to estimate the truth by operating on the data with linear or logistic 

regression, Cox model, etc., starting from the independent (input) variables “x” to the response 

variable “Y”, and validating the outcome with “yes” or “no”, goodness-of-fit, and residual 

examination. This conservative approach is now being challenged by the “algorithmic modeling 

culture” (35). Those very much in favor of the algorithmic modeling might overlook the 

difference between statistics used for engineering as opposed to natural science, here especially 

related to human health and survival (36). 

 

The question should be allowed while using AI methods in statistics, what happened to the need 

to calculate a sample size, and how to deal with confounding, Berkson’s Bias, Simpson’s 

Paradox, and other significant biases.  

 

AI and scientific publications 

 

A real threat to science publications is the misuse of AI methodology. Recently, journals related 

to PLOS, Frontiers announced that submissions on open health data from surveys of the National 

Health and Nutrition Examination  (NHANES) based on more than 130.000 individuals will be 

automatically rejected because ‘of unscrupulous actors use these data sets to churn out nonsense 

scientific papers’ (37). This drastic step is a response to an overwhelming increase in low-quality 

papers generated by public data and AI, which turned out to be an industrial-scale publishing 

fraud, including ‘unethical’ AI research (38-40).  

 

Conclusion 

 

The usefulness of AI in future in health science varies across specialties. Medical expertise, 

particularly in clinical medicine, will benefit from genomics in precision medicine, rare genetic 

diseases, and the interplay of genetics with the environment through epigenetics. Innovative tools 

might be developed to assist in patient care and support clinicians in making informed decisions, 

but they cannot relieve clinicians of their responsibility. Public health in epidemiology and 

statistics could contribute to improving AI technology, but be careful not to disregard biases and 

erroneous conclusions that have long been known to be associated with epidemiological 

research. The pharmaceutical economic sector should be carefully kept within the legal 

boundaries and resist towards financial gain against fairness for the whole society.  

 

Medical sociology, psychiatry, and related fields using AI models designed for the general public 

should be more conscious of the social impact of the tools made available and assess their 

impacts effectively. Digital technologies can be easily deployed to billions of people, while 

‘corporate actors resist public knowledge creation or data sharing’ (41). Scientists' expectations 

for the future of AI are quite diverse.  

 



A balanced view is expressed by about 4.000 researchers who were asked how they think AI will 

improve life (42). Those from China are the most optimistic, seeing more benefits than risks in 

about 70%. From the listed countries, the UK has the lowest optimism, well below 50%, while 

the EU, India, and low-income countries hover around 50%. One main expectation is that AI will 

increase access to learning and education. Additionally, positive changes are foreseen for easier 

jobs, improved health care, and reduced working hours at the same pay as before. The often-

voiced adverse effect is the unreliability of the information, distinguished from fakes (42).  

 

Others do not share this somewhat moderate, positive impression and expectation of AI, and note 

that an overreliance on AI-driven modeling is harmful to science and that its growing role could 

do more harm than good (36). An error called ‘leakage’ is supposed to occur frequently in 

machine learning modeling, enabling AI to make predictions and test hypotheses. Evaluation 

data influence the training process by focusing on the ‘patterns’ of the evaluation data, but fail to 

capture the real meaning behind the phenomenon observed (43). A systematic review of papers 

on the COVID-19 calamity revealed that most studies used poor evaluation methods and were 

uncertain about the disease's reality in adult patients, while the negatives were in young children. 

The conclusion was that a simple chest X-ray or CT scan is sufficient for the diagnosis. Often 

overlooked are individual findings and their meaning for the progress of scientific understanding 

(36).  
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